ERF Seminar Lund October 26, 2008

How can Strategic Access to Research Infrastructures Foster Technology Advancement ?

Outcomes from the GENNESYS study

Helmut Dosch. DESY

Helmut Dosch | 1st ERF Conference | Lund October 27, 2009 | Page 1

Nobel Price Chemistry 2009

- Ada Yonath (together with
- V. Ramakrishnan und T. Steitz)
- Pioneered Ribosome crystallography
- 1986-2004 Head of Max-Planck group "Ribosomstruktur" at DESY

DESY

 Key x-ray experiments at DORIS /BW6

Ruprecht Haensel

1935 – 2009 Pioneer of Synchrotron radiation

1962 - 1984
1985 - 1986
1986 - 1992
1993 - 1996
1996 - 2000
19.10.2009

Pioneering work at DESY Director General ILL Director General ESRF Dean Physics Faculty U Kiel President U Kiel +

GEMEINSCHAFT

How can Strategic Access to Research Infrastructures Foster Technology Advancement ?

Outcomes from the GENNESYS Study

GENNESYS WHITE PAPER

A NEW EUROPEAN FAITHERSKIP BETWEIN NAND MATERIALS SCIENCE & SAND TECHNOLOGY AND EVEDNOTION RADIATION AND NEUTRIN FAUTHER

H. Dosch and M.H. Van de Voorde Grand European Initiative on Nanoscience and Nanotechnology Exploiting Synchrotron Radiation and Neutron Facilities

Max-Planck-Institut für Metallforschung, Stuttgart (2009) ISBN 978-3-00-027338-4

MEINSCHAF

GENNESYS Foresight Study (2003-2008)

Future Strategic Nanoscience for Key Technologies in Europe:

- -State of the Art
- Future Needs
- Key Barriers
- Role of RIS
- Conclusions/Recommendations

more than 600 authors/contributors from Universities Research Labs Industry Large Scale Facilities

GENNESYS WHITE PAPER

A NEW EUROPEAN PARTNERSHIP BETWEEN NANO-MATERIALS SCIENCE & NANO-TECHNOLOGY AND SYNCHEOTRON RADIATION AND NEUTRON FACITILITES

LMHOLTZ

GEMEINSCHAFT

Development of SR/N technologies

Mature X-facilities

"Synchrotron radiation and more"

New User Communities !!

Dedicated Research Consortia onsite

User Support Facilities

Involvement of local Universities

Industrial Applications

Open Access vs. Strategic Access

Nanoscience, Paleontology, Art, Medical, "learning from past mistakes"

ESRF: PSB: DESY: CSSB

DESY Nanolab

Research and Education

BMBF 2009: "What is the role of the German photon facilities in the innovation process ?"

Conclusions from **GENNESYS** study

Helmut Dosch | 1st ERF Conference | Lund October 27, 2009 Page 7

Fundamental Research

Traditional role of SR & N

Innovation Process

New role of SR&N?

KNOWLEDGE

HELMHOLTZ GEMEINSCHAFT

Helmut Dosch | 1st ERF Conference | Lund October 27, 2009 Page 8

Grand Challenges

Advanced Materials for Key Technologies

Medicine/ Health

Transport

Advanced SR Facilities

Energy/ Environment

Information/ Communication

ELMHOLTZ

GEMEINSCHAFT

Helmut Dosch | 1st ERF Conference | Lund October 27, 2009 | Pag

Page 9

GENNESYS State of the Art: Nanoscience

Fragmentation of Efforts between

- disciplines, scientific communities, sectors
- funding agencies ("vertical structures meet horizontal challenges")
- members countries

No Clear Research Strategy for Urgent Challenges

◆ renewable energy, environment, climate change, ...

Underusage of European Research Infrastructure "Information Gap" Insufficient Integration of Eastern European Member States Inadequate Training Schemes and Unclear Research Careers Awareness Dilemma : Importance of Materials and others

GENNESYS Roadmaps

Grand Challenges in Nanoscience and Nanotechnology (selection)

Generic Challenges Materials-Specific Challenges

Technology Challenges

Nano-Confinement Proximity Dimensionality Interfaces

Hierarchical Structures

Quantum Phenomena

Taylored Design Screening of Complex **Multicomponent Materials Impurity Control** Hybrid Architectures **Multiferroics** Smart Nanostuctures Failure-Proof/Self-repairing **Systems**

Nanomaterials and –systems in extreme conditions Nanostandards Nanolubrication Nanojoining

Novel nanomaterials for future -

- climate-friendly energy technologies
- pharmaceuticals, medicine,
- chemical industry, catalysis
- processing industry
- information technologies
- transport technologies
- cultural heritage

Better understanding of -

- toxic effects
- friction / wear at nanoscale

LMHOLTZ

GEMEINSCHAFT

corrosion / protection

GENNESY		1			
Universities	Research Labs	Industry	Nand	GENNESSIS	
Fundamentals	Materials	Technologies	David	Training	
			Devic	None W	
Nanostructures	STRUCTURAL	INFORMATION COMMUNICATION	72	Standardisation	
Dimensionality Effects	FUNCTIONAL	HEALTH/MEDICINE	Lonit	Quality Assurance	5
Proximity	BIO	FOOD Cosmetics	oring	Prenormative Research	s llon
Interfaces	COATINGS	TRANSPORT		Impurities and	200
Nanoconfinement Quantum Effects	INORGANICS	ENERGY	Syste	Nano- Z Compatibility	5 N
Thin Films Multilayers	HTBRIDS	ENVIRONMENT CLIMATE CHANGE	mati	Failure Degradation	いろうち
Hierarchical	Nanomechanical Engineering	CHEMICAL INDUSTRY	S	Performance	いいたい
Dynamics	Nanocorrosion Protection	CATALYTIC PROCESSING	Dig	Extreme Environments	
Synthesis	Nanotribology	TOXICITY	COVE	Relevant Conditions	といけい
Multiscale Modelling	Dosch Resea	SECURITY rch Infrastructure for the Nanowo	orld	Nondestructive Insitu	5

GENNESYS Conclusions/Recommendations

- Create knowledge-based research platforms for nanomaterials design
- Exploit the (already existing) full analytical potential of European RIS
- Build interdisciplinary /intersectorial nanomaterials research consortia
- Engage in a strategic and sustainable European research & training effort (with better integration of Eastern European countries)

 For urgent and complex problems (energy, environment, IT, medical)
set up dedicated Science / Technology Centres which overcome fragmentation focus all forces and (expensive) technologies from all disciplines act as a European hubs for research and training
Place these centres strategically in direct neighbourhood/interaction to/with RIS to enable novel strategic access to (existing) high-tech nano-analysis facilities: insitu, in-vivo, systematic investigations, combinatorial studies, direct access long-term studies (It-perfomance, degradation, failure, quality assurance,...), standardization,

JENNEST

Mature X-facilities

"Synchrotron radiation and more"

New User Communities !!

Dedicated Research Consortia onsite

User Support Facilities

Involvement of local Universities

Industrial Applications

Open Access vs. Strategic Access

Nanoscience, Paleontology, Art, Medical, "learning from past mistakes"

ESRF: PSB: DESY: CSSB

DESY Nanolab

Research and Education

BMBF 2009: "What is the role of the German photon facilities in the innovation process ?"

Conclusions from **GENNESYS** study

Helmut Dosch | 1st ERF Conference | Lund October 27, 2009 Page 16

GENNESYS Strategic Research

Facility I

Longterm commitment to mastering a grand challenge in

Energy-environment Medicine Transport Communication-information

together with key experts from universities, research labs, industry

LMHOLTZ

GEMEINSCHAFT

ENNES!

GEMEINSCHAFT

GENNEST

GEMEINSCHAFT

GENNESTS

GENNESYS International Congress on Nanotechnology and Research Infrastructure

Barcelona 26-29 May, 2009

approx. 1000 participants

Promote -

- collaboration between materials science, universities, industry, RI
- creation of European centres of Excellence
- strategic relevance of RI (Grand Challenges)

TOPIC A 90minFuture Role of Synchrotron Radiation, Laser
and Neutron facilitiesChairman
IntroductionChairman
Panel (5)C. Rizzuto (ESFRI)
M. van der RestHervé Pero (EC)
5 Lab Directors

Need for Sponsoring of Congress: 5-10 T€ / facility

