Future Chinese Large Scientific Facility

based on Accelerator and Sustainability

3rd Workshop Energy for Sustainable Science

at Research Infrastructures DESY Hamburg, Germany 29/30 October 2015

Yunlong Chi

Deputy Head Accelerator Division Institute of High Energy Physics (IHEP) Ch<u>inese Academy of Sciences (CAS)</u>

Contents

- Brief Introduction of IHEP
- Running Large Scientific Facilities Based on Accelerator in China
- Under Construction Large Scientific Facilities Based on Accelerator in China
- Future Chinese Large Scientific Facilities Based on Accelerator in China
- Sustainability of Future Chinese Large Scientific Facility
- Summary

Brief Introduction of IHEP

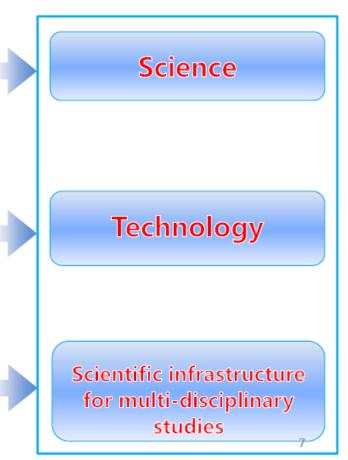
Brief Introduction of IHEP

May,1950	Institute of Modern Physics
October,1953	Institute of Physics
July ,1958	Institute of Atomic Energy
February ,1973	Institute of High Energy Physics

IHEP Main Research Disciplines

Particle Physics

- HEP Exp. Based on Accelerators
- Particle Astrophysics & Neutrino Exp.
- Particle Detection and Electronics
- Particle Physics Theory


Accelerator Physics and Technologies

- High Luminosity Electron Accelerator
- High Intensity Proton Accelerator
- Applied Research and Technology Transfer

Radiation Technologies and Applications

Synchrotron Radiation Techniques & Applications

- Neutron Scattering Techniques & Applications
- Nuclear Analytical Techniques & Applications

Large Science Facilities @ IHEP

IHEP serves as the backbone of China's large science facilities

In operation

- Beijing Electron Positron Collider (BEPCII)
- Beijing Spectrometer (BESIII)
- Beijing Synchrotron Radiation Facility (BSRF)
- Yangbajing Cosmic Ray Observatory: ASγ & ARGO
- Daya Bay Neutrino Experiment

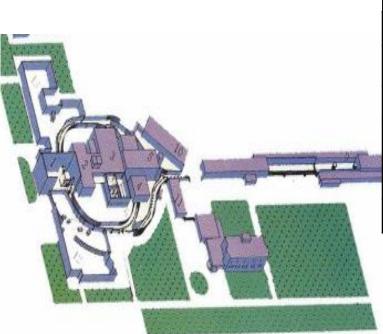
Under construction

- China Spallation Neutron Source (CSNS)
- Hard X-ray Modulation Telescope(HXMT)
- Accelerator-driven Sub-critical System (ADS)
- Jiangmen Neutrino Underground Observatory (JUNO)

Under planning

- BAPS, LHAASO, XTP, HERD, ...

Way to the Future



Running Large Scientific Facilities Based on Accelerator in China

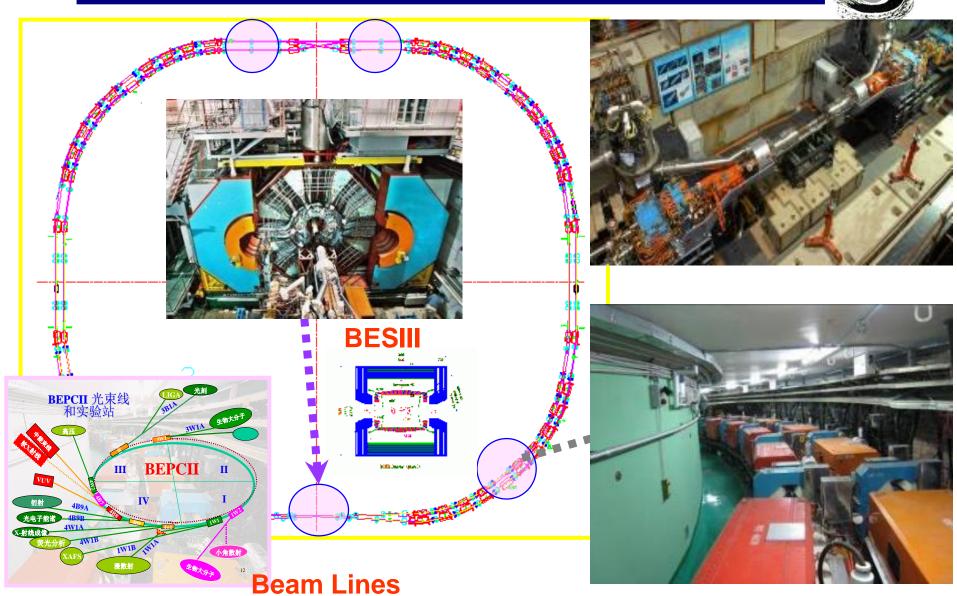
- Beijing Electron Positron Collider(BEPC/BEPCII)
- Heavy Ion Research Facility in Lanzhou(HIRFL)
- Shanghai Synchrotron Radiation Facility(SSRF)

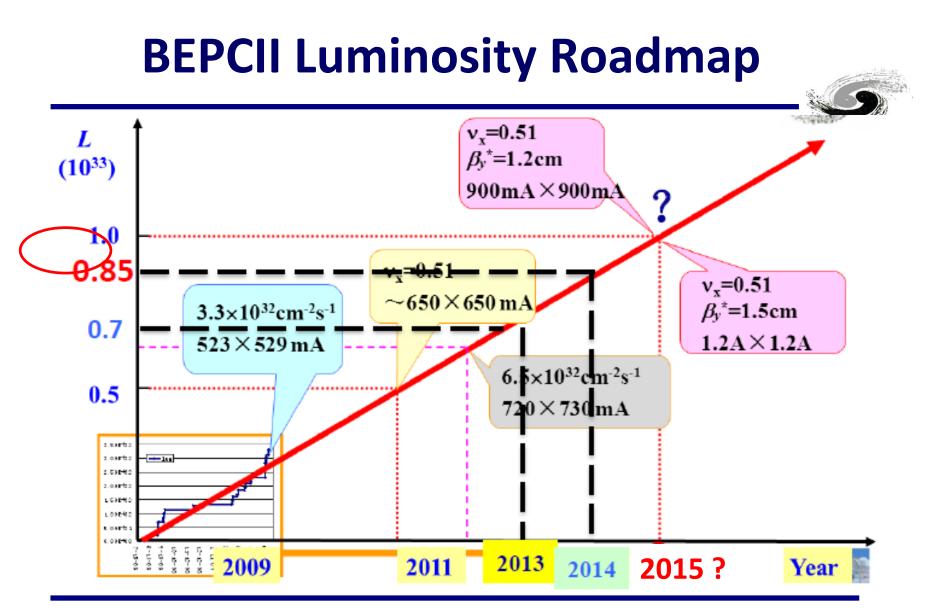
Beijing Electron Positron Collider(BEPC/BEPCII)

- Beijing Electron Positron Collider :
 - Constructed: 1984-1988
 - BESI: run from 1989-1998
 - BESII: run from 1999-2004
- Upgraded (BEPCII):
 - 2004-2008
 - BESIII: run from 2008

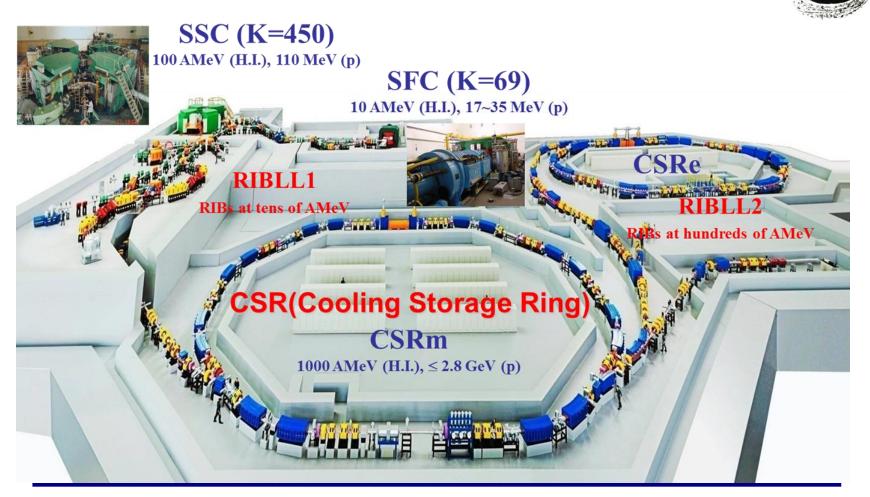
High Luminosity Double Ring e- e+ Collider

Design Goals:

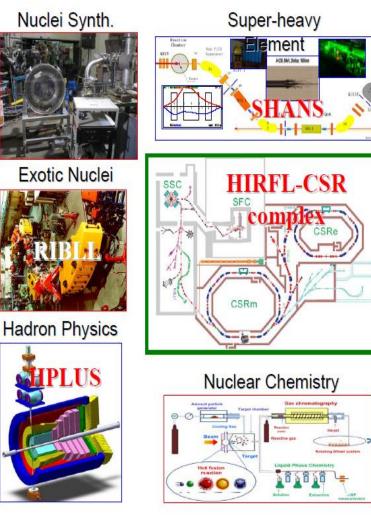

τ charm energy region world best collider
 Keep Collider and Light source operation

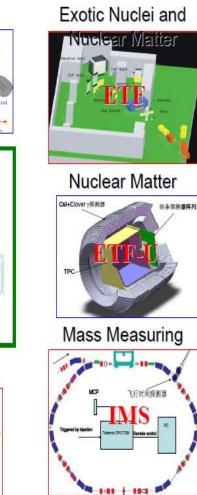

BEPCII:

Beam energy range	1–2.3 GeV
Optimized beam energy region	1.89GeV
Luminosity @ 1.89 GeV	1×10 <mark>33</mark> cm-2s-1
Injection from linac	Full energy injection: Einj=1.55-1.89GeV Positron injection rate > 50 mA/min
Dedicated SR operation	250 mA @ 2.5 GeV



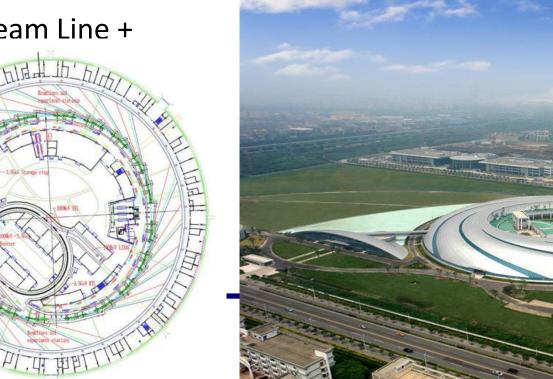
BEPCII: High Luminosity Double Ring e- e+ Collider




Heavy Ion Research Facility in Lanzhou(HIRFL)

Heavy Ion Research Facility in Lanzhou(HIRFL)

Main Exp. Setups for NP @ HIRFL


Typical beams provided by in recent years

lan Baama		E (MeV/A)		Intensity
Ion Beams	SFC	SSC	CSR	(eµA)
⁹ Be ⁴⁺	7			0.008
¹² C ⁴⁺	7.0			10-15
¹⁶ 0 ⁶⁺	7.99			7-12
²⁰ Ne ⁷⁺	7.2			10-12
²⁶ Mg ⁸⁺	6.54			2.0
⁴⁰ Ar ⁸⁺	2.35			8-15
40Ca12+	5.8			1.0
⁷⁸ Kr ¹⁹⁺	4.0		4~487	7-350
¹²⁹ Xe ²⁷⁺	3.0			6.0-7.0
²⁰⁸ Pb ²⁷⁺	1.1			0.8-1.0
²³⁸ U ²⁶⁺	0.81			0.33
12 C 4+~6+	7.0~8.2	80.5~100	7~1000	0.2 -1 0000
²² Ne ^{7+/10+}	6.17	70		0.2-0.5
²⁶ Mg ^{8+/12+}	6.17	70		0.3-0.4
³² S ^{11+/16+}	7.1	82		0.2-0.3
³⁶ Ar ^{8+/18+}	2.07	22	22~1000	2.5-3.5
⁴⁰ Ar ^{12+/17+}	7.1	82		0.1-0.3
⁵⁸ Ni ^{13+/22+}	4.5	50		0.1-0.2
¹²⁹ Xe ²⁷⁺	1.8	19.5	200	0.6-500
209 Bi 31+/36+	0.88	9.8	170	0.08-60

Shanghai Synchrotron Radiation Facility(SSRF)

Medium Energy 3rd Generation Light Source, running from 2009

- 150 MeV Linac
- Full energy booster
- 3.5 GeV Storage Ring
- 7 Beam Line +

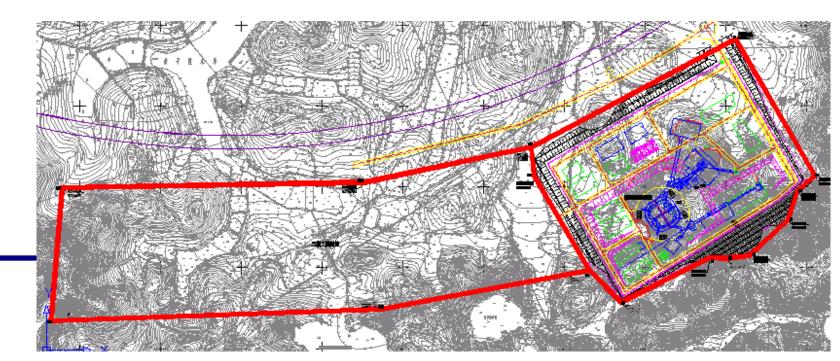
Under Construction Large Scientific Facilities Based on Accelerator in China


• China Spallation Neutron Source (CSNS)

China Spallation Neutron Source (CSNS)

 The phase-I CSNS facility consists of an 80-MeV H⁻ linac, a 1.6-GeV RCS, beam transport lines, a target station, and 3 instruments.

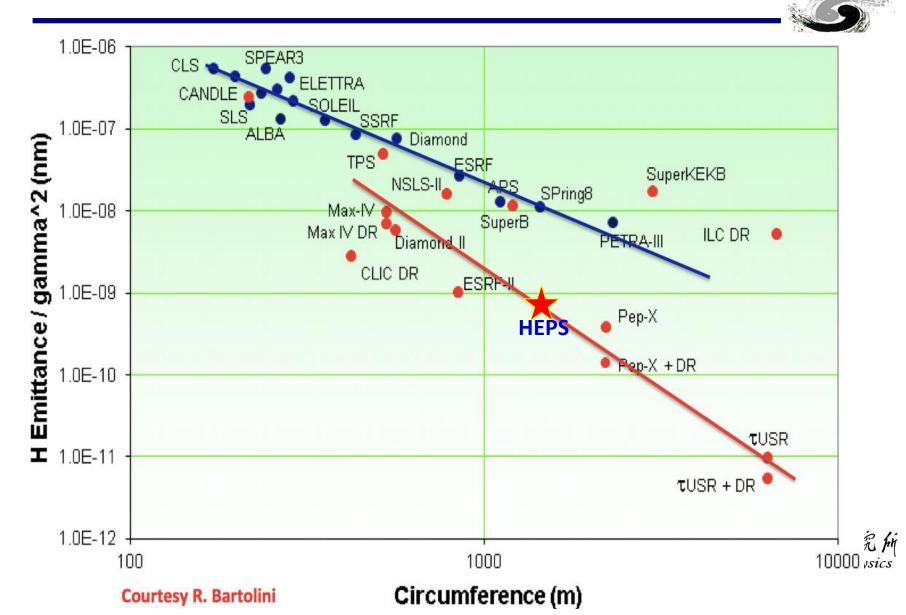
Project Phase	I	II
Beam Power on target [kW]	100	500
Proton energy [GeV]	1.6	1.6
Average beam current [µA]	62.5	312.5
Pulse repetition rate [Hz]	25	25
Linac energy [MeV]	80	250
Linac type	DTL	+Spoke
Linac RF frequency [MHz]	324	324
Macropulse. ave current [mA]	15	40
Macropulse duty factor	1.0	1.7
RCS circumference [m]	228	228
RCS harmonic number	2	2
RCS Acceptance [π mm-mrad]	540	540
Target Material	Tungsten	Tungsten



CSNS Civil Design

- Total long-term construction site area is about 0.67km².
- 0.27km² has been occupied for phase-I construction.
- The remaining land is planned for future expansion for new project.

Future Chinese Large Scientific Facilities Based on Accelerator in China


- High Energy Photon Source (HEPS)
- Accelerator Driven System (ADS) in China & China Initiative ADS (CIADS), Accelerator Driven Advanced Nuclear Energy (ADANES)
- Heavy Ion Accelerator Facility (HIAF)
- Circular Electron Positron Collider (CEPC) & Supper Proton Proton Collider (SppC)

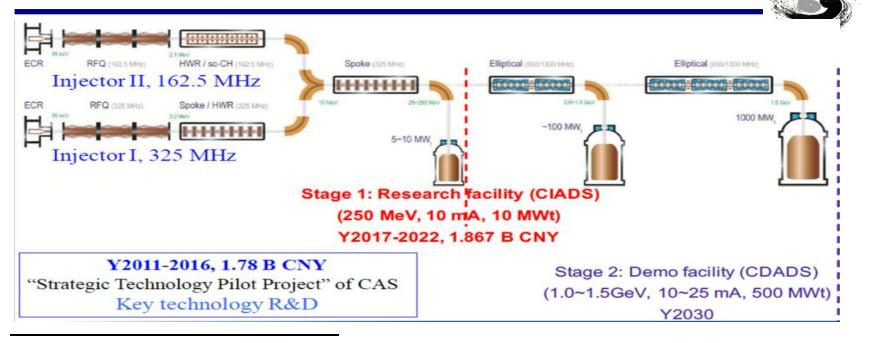
High Energy Photon Source(HEPS)

- High energy: 6GeV
- Low emmitance: <0.1nm·rad, can be improved to 0.01nm·rad
- Brilliance: >10²²phs/s/mm²/mrad²/0.1%BW
- The site has the possibility to build XFEL

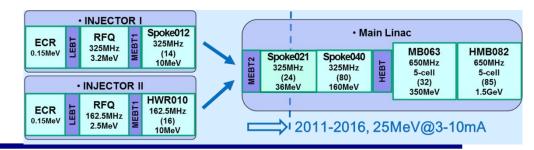
Comparing with other facilities

The schedule of HEPS construction

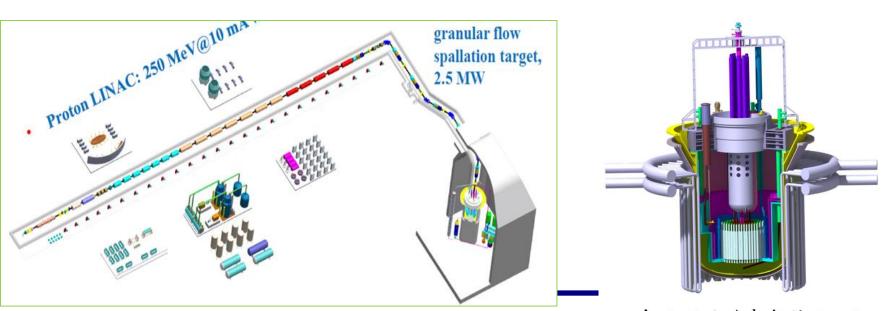
- The preliminary research was supported by IHEP.
- HEPS-TF (High Energy Photon Source Test Facility) project was approved in Feb. 2015 (323.5M RMB)
- HEPS
- Construction will start in 2018.
- Commissioning in 2023.


Accelerator Driven System (ADS) in China

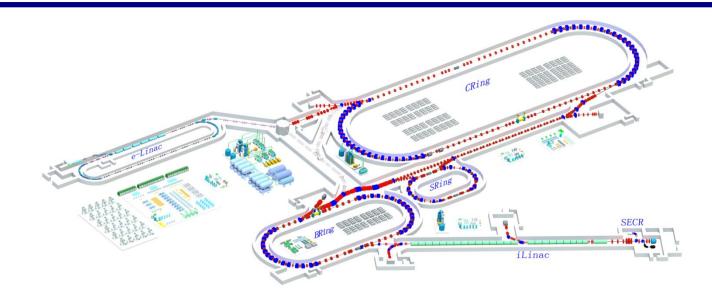
- To July 2013 (http://www.iaea.org/NuclearPower/Systems-and-Databases/index.html)
 - 18 reactors in operation, 13.860GWe: (6th in the world)
 - 28 reactors under construction, 27.790GWe; (1st in the world)
- Estimation for the future (slow down after 2011.3)
 - -2020: ~58 GW_e NPP in operation
 - -2030: ~10% of NP to total power capacity
 - -2050: 350~400 GW_e, ~20% of NP to total power capacity
 - \rightarrow almost same as the scale of the total in the world today!



Accelerator Driven System(ADS)


Parameters	Value	Units
Energy	1.5	GeV
Current	10	mA
Beam power	15	MW
Frequency	162.5/325/650	MHz
Duty factor	100%	
Beam Loss	<1 (0.3)	W/m
	<25000	1s <t<10s< td=""></t<10s<>
Beam trips/year	<2500	10s <t<5m< td=""></t<5m<>
	<25	t>5m

China Initiative ADS (CIADS)



- Linac : 250MeV@10mA with CW Proton Linac
- Target : Granular flow spallation target
- Reactor : 10MW Pb-Bi cooling subcritical reactor

Heavy Ion Accelerator Facility(HIAF)

Accelerator

Motivations of HIAF

Basic Researches

- Precise Mass Measuring
- Radioactive Physics and Super-heavy Element Synthesis
- High Energy Density Physics

....

Non-perturbation Hadron Physics

Applications

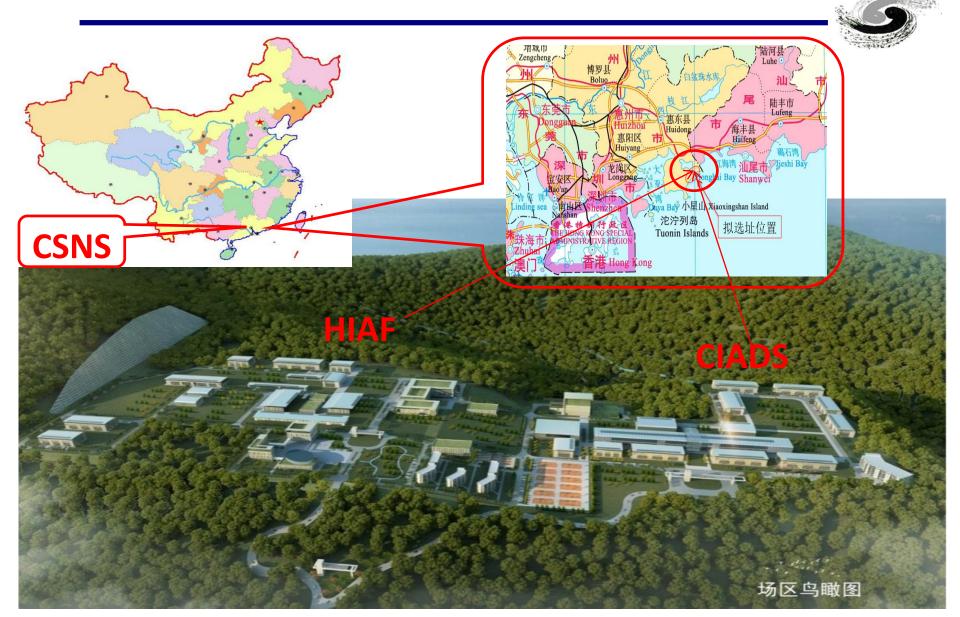
- Space Simulation
- Irradiation Material
- induction materia
- Radiation Effects
- Trace Technology

•

			01	
Ion	ECR	U^{34+}	14 keV/u	
source	H_2^+	H_2^+	14 keV/u	
iLinac		U^{34+}	25 MeV/u	
ILIIIac		H_2^+	54 MeV/u	
BRing		U^{34+}	0.8 GeV/u	
DKillg		р	9.5 GeV/u	
		U^{34+}	1.1 GeV/u	
CRing		U^{92+}	4.1 GeV/u	

р

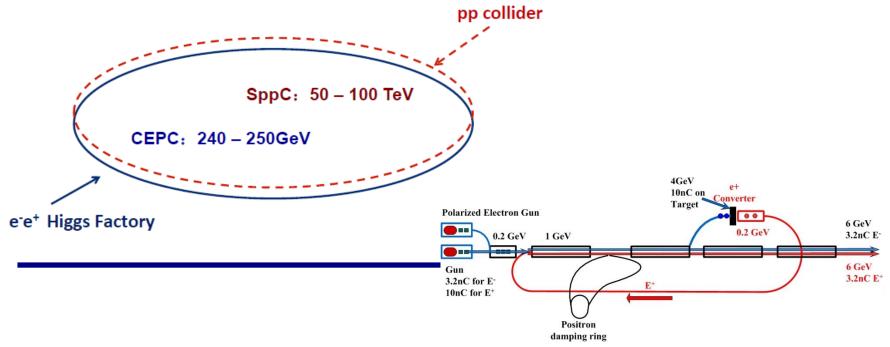
lons


Energy

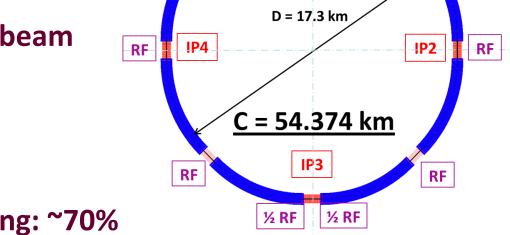
12.0

01	
eV/u	0.05 pmA
eV/u	2.0 pmA
leV/u	0.028 pmA
leV/u	1.0 pmA
GeV/u	~3.3×10 ¹¹ ppp
GeV/u	~2.3×10 ¹² ppp
GeV/u	~1.0×10 ¹² ppp
GeV/u	~2.0×10 ¹¹ ppp
GeV/u	~4.5×10 ¹² ppp

Intensity


Site for CIADS & HIAF

CEPC & SppC



- Circular Electron Positron Collider (CEPC) is to study the Higgs boson
- Supper proton proton Collider (SppC)
- A CEPC (Phase I) + SppC (Phase II) was proposed in IHEP, Sept.2012

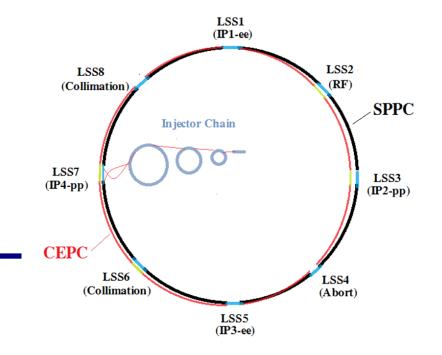
General info of CEPC

- Critical parameters:
 - Beam energy: 120GeV
 - Circumference: ~54 km
 - SR power: 51.7 MW/beam
 - 8*arcs
 - 2*IPs
 - 8 RF cavity sections
 - Filling factor of the ring: ~70%
- Length of the straight sections are compatible with SppC requirement

½ RF

RF

IP1


½ RF

RF

General info of SppC

SPPC rings:

- 8 arcs (5.9 km) and long straight sections (850m*4+1038.4m*4)
- 2 IPs for pp (perhaps one at IR6 for e-p in the future)
- 2 IRs for e+e detectors (pp: injection, RF?)
- 2 IRs for collimation
- 2 IRs for RF and beam abort

CEPC & SppC Time Schedule

CPEC

- ➢ Pre-study: 2013-15 → End of 2014 Pre-CDR completed
- R&D: 2016-2020
- Engineering Design:
 2015-2020
- Construction: 2021-2027
 Data taking: 2030-2036

SppC

Pre-study: 2013-2020

- ≻ R&D: 2020-2030
- Engineering Design: 2030-2035
- Construction: 2036-2042
- Data taking: 2042 -

Possible site: Qinhuangdao, Hebei province

East end of Greatwall

Time Schedule of Future Large Facilities

Most facilities construction & running during 2020~2040

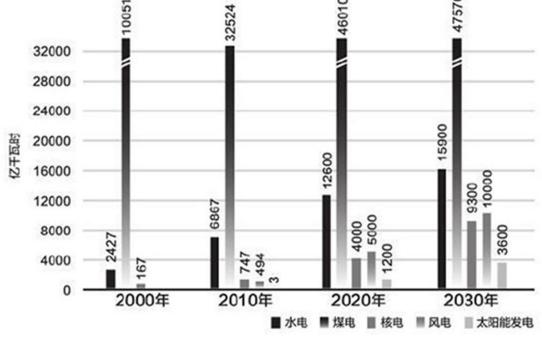
	Pre- Study	R&D	Engineering Design	Cons- truction	Commi- ssioning	Run
HEPS		2015-2018		2018-2023	2024	2024
CIADS		2011-2016		2016-2022		
HIAF				2016-2022	2013	2023
ADANES				2023-2030	2030	
CEPC	2013-2015	2016-2020	2016-2020	2021-2027	2027-2030	2030-2036
SppC	2013-2020	2020-2030	2030-2035	2036-2042		2042 -

Sustainability of Future Chinese Large Scientific Facility

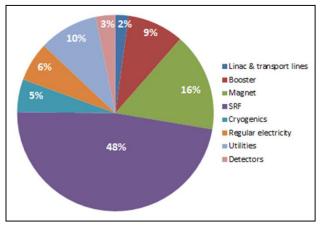
U.S.-China Joint Announcement on Climate Change

- Beijing, China,
- 12 November 2014

- Today, the Presidents of the United States and China announced their respective post-2020 actions on climate change, recognizing that these actions are part of the longer range effort to transition to low-carbon economies, mindful of the global temperature goal of 2°C.
- The United States intends to achieve an economy-wide target of reducing its emissions by 26%-28% below its 2005 level in 2025 and to make best efforts to reduce its emissions by 28%.
- China intends to achieve the peaking of CO2 emissions around 2030 and to make best efforts to peak early and intends to increase the share of non-fossil fuels in primary energy consumption to around 20% by 2030.


Non-fossil fuels in primary energy consumption to around 20% by 2030

- Wind power, Hydro power, Photovoltaic power significantly increased in 2030
- China has been the world's largest manufacturer of solar panels since 2008


2000~2030 Electricity Production in China

Electricity Requirements of Large Facilities

Facility	Power Consumption MW	Operation hrs/Year	Electricity GWh/Year
BEPCII	~ 6	7000	42
HIRFL	~ 4	7000	28
SSRF	~ 6	7000	42
CSNS	~ 25	5000	125
CIADS	~ 5	5000	25
HEPS	~ 12	7000	84
HIAF		7000	
CEPC	~ 500	7000	3500
ADANES		5000	
SppC		7000	

S

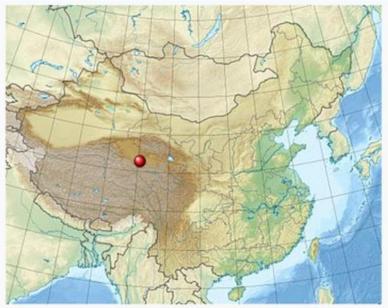
CEPC Relative Power Consumption

900MW Qinshan NPP

Renewable energy for Future large facilities

- At present there are seldom considerations and experience for energy sustainable of Chinese large scientific facilities
- We Need to consider take advantage of Renewable energy for infrastructure of future large facilities
- Contribution to reduce CO2 Emission
- Need to organize expert team to develop energy sustainable technology for large scientific facilities

Renewable energy for Future large facilities


- Increase Component power efficiency,
 - like klystron,,,
- Energy recovery
 - Like CEPC 500MW power consumption, big heat from accelerator running, Recovery of waste heat is big energy saving
- Use green energy : Photovoltaic, wind,,,
 - Photovoltaic power is one of best renewable power for infrastructure, like CEPC big Campus, such as building and campus light, heat, etc.
 - ~ 6 km2 site can produce 200MW photovoltaic power

200 MW photovoltaic power station

Coordinates	🥥 36°24′00″N 95°07′30″E
Status	Operational
Construction begar	1 20 August 2009
Commission date	29 October 2011
Construction cost	RMB3.26 billion
Owner(s)	Huanghe Hydropower
So	lar farm
So Type	<mark>lar farm</mark> Flat-panel PV
_	
Type Site area	Flat-panel PV
Type Site area	Flat-panel PV 5.64 km ² (2.2 sq mi) generation

Qinghai Golmud Solar Park

Location of Qinghai Golmud Solar Park in China

Summary

- China running several large scientific facilities at present
- Proposed and submit to government to construct several large scientific facilities in future, some of them may approved and constructed by 2017-2030
- At present we are short of research activity at energy sustainable technology
- For the future large scientific facility we need to organize expert team to planning and Develope energy sustainable technology from initial stage of designing of facility
- We hope carry through the international collaboration in energy sustainable technologies for future facilities

Thanks for your attention !