

LHC Cryogenics design and operation: optimization and reduction of the energy consumption

S. Claudet (CERN, Geneva) LHC Cryogenics OPeration team leader

Energy Management for Large-Scale Research Infrastructures

Outline

- Introduction to CERN and LHC Cryogenics
- Power input for refrigeration, design & implementation
 - The Carnot factor
 - The heat loads (final user + distribution)
 - The refrigerators
- Operation results, availability and power consumption
- Indentified alternatives for further optimisation
- Summary

CERN in brief

European Organization for Nuclear ResearchFounded in 1954Geneva, Switzerland20 Member States + AssociatesAnnual budget: ≈ 900 MCHFBelow 2'500 staffOver 10'000 users

p-p collisions 10³⁴ cm⁻².s⁻¹ 14 TeV 500 MJ beam energy

24 km of superconducting magnets @1.8 K, 8.33 T

Workshop Energy for sustainable science, ESS Lund, Oct'2011 3/38 LHC Cryog

Main reasons to superconducting

For accelerators in high energy physics

E_{beam} ≈ E . L

[Gev] [MV/m] [m]

Compactness through higher fields

[Gev] [T] [m]

 $E_{beam} \approx 0.3 \cdot B \cdot r$

CFR

 Saving operating energy Electromagnets: Resistive: P_{input} ≈ E_{beam} Superconducting: P_{input} ≈ Pref

Acceleration cavities $P_{input} \approx Rs.L.E^2/w$ $R_s \approx R_{BCS} + R_o$ $R_{BCS} \approx (1/T) \exp(-BT_c/T)$

Capital Cost

Layout of LHC cryogenics

Workshop Energy for sustainable science, ESS Lund, Oct'2011

5/38 LHC C

Magnet cooling scheme

Superconductivity served by superfluidity !

Workshop Energy for sustainable science, ESS Lund, Oct'2011

6/38

How does it compare ?

Workshop Energy for sustainable science, ESS Lund, Oct'2011 7/38 LHC Cryogenics, optimisation of energy consumption

Outline

- Introduction to CERN and LHC Cryogenics
- Power input for refrigeration, design & implementation
 - The Carnot factor
 - The heat loads (final user + distribution)
 - The refrigerators
- Operation results, availability and power consumption
- Indentified alternatives for further optimisation
- Summary

Power Input ≈ Power@cold x Carnot / %w.r.tCarnot

4MW ≈ 18kW @ 4.5K x 66 / 30%

8 such plants installed for LHC + specific units for the 1.8K process

 \Rightarrow 40 MW installed electrical power

An idea of yearly operating costs (Power only)

- \Rightarrow 11 months (320GWh) @ 60 CHF/MWh => 19.3 MCHF
- \Rightarrow Already 1% is about 0.2 MCHF !!!

An obvious incentive to optimise each of the above contributing factors !

The Carnot Factor (1/3)

The Carnot Factor is a direct consequence of the combination of first and second thermodynamic laws

Heat / Work entering the system + Heat / Work leaving the system -

This is THE governing effect for cryogenics

Workshop Energy for sustainable science, ESS Lund, Oct'2011 10/38 LHC Cryogenics, optimisation of energy consumption

The Carnot Factor (2/3)

Workshop Energy for sustainable science, ESS Lund, Oct'2011 11/38 LHC Cryogenics, optimisation of energy consumption

The Carnot Factor (3/3)

Workshop Energy for sustainable science, ESS Lund, Oct'2011 12/38 LHC Cryogenics, optimisation of energy consumption

Minimising heat loads (1/4)

Power Input ≈ Power@cold x Carnot / %w.r.tCarnot

Heat loads management: Very detailed and methodic accounting of the various contributions, centralised contingency factors, periodic follow-up

RnD: Large design & optimisation efforts for the cryostat and its sub-components

Multi-layer insulation

Workshop Energy for sustainable science, ESS Lund, Oct'2011 13/38 LHC Cryogenics, optimisation of energy consumption

Other RnD examples

High Temperature Superconducting leads

Below 2K specific components

Cold Compressors

Stainless Steel Plate heat exchangers

Significant reduction of heat loads (≈ 25%)

Workshop Energy for sustainable science, ESS Lund, Oct'2011

14/38

Exergy, Introduction

Large scale (capacity) superconducting applications require distributing cooling power over long distances (high flow rates) with minimised temperature gradients for high thermodynamic efficiency

Exergy analysis (applied in the past for refrigeration plants) has been proposed as a way to quantify distribution losses, with the potential to help technical arbitration amongst competing solutions

LHC Distribution, Exergy Flow Diagram

Workshop Energy for sustainable science, ESS Lund, Oct'2011

CERN

16/38 LHC C

Helium refrigerators

Power Input ≈ Power@cold x Carnot / %w.r.tCarnot

LE DIAGRAMME DE STROBRIDGE

Workshop Energy for sustainable science, ESS Lund, Oct'2011

17/38

18 kW @ 4.5 K Refrigerators

33 kW @ 50 K to 75 K - 23 kW @ 4.6 K to 20 K - 41 g/s liquefaction

18/38

Workshop Energy for sustainable science, ESS Lund, Oct'2011

Contracting refrigerators

Similar amounts !

Adjudication : LOWEST

CAPITAL Cost	+	OPERATING cost over 10 years		
Values provided in quotations by bidders		1/3 Low load	2/3 Max load	(6600 hr/yr)

Operating cost: Garanteed power consumption x hours x 60 CHF/MWh Real performance measured for acceptance, with bonus/malus correction

LEP/LHC 4.5K Refrigerators performance te

Workshop Energy for sustainable science, ESS Lund, Oct'2011 19/38 LHC Cryogenics, optimisation of energy consumption

Testing the cryogenic sub-systems

A coherent approach with the contracting approach; a way to get familiar with process optimisation and tuning for availability

Workshop Energy for sustainable science, ESS Lund, Oct'2011 20/38 LHC Cryogenics, optimisation of energy consumption

Outline

- Introduction to CERN and LHC Cryogenics
- Power input for refrigeration, design & implementation
 - The Carnot factor
 - The heat loads (final user + distribution)
 - The refrigerators
- Operation results, availability and power consumption
- Indentified alternatives for further optimisation
- Summary

Tuning one of 8 LHC sectors

Functional analysis, Methodic and systematic approach, a bit of time ...

Cryo operator in Cern Central Control room

Workshop Energy for sustainable science, ESS Lund, Oct'2011 23/38 LHC Cryogenics, optimisation of energy consumption

24/38

Workshop Energy for sustainable science, ESS Lund, Oct'2011

ER

LHC Cryo global availability 2010 Based on LHC_Global_CryoMaintain signal per unit of time

25/38

Workshop Energy for sustainable science, ESS Lund, Oct'2011

LHC Cryo global availability 2011

Workshop Energy for sustainable science, ESS Lund, Oct'2011

Cryogenic architecture

LHC Cryo-OP

Typical LHC even point

27/38

Workshop Energy for sustainable science, ESS Lund, Oct'2011

Efficient operation at low load

Typical LHC even point

Workshop Energy for sustainable science, ESS Lund, Oct'2011 28/38

Power Consumption

Workshop Energy for sustainable science, ESS Lund, Oct'2011 29/38 LHC Cryogenics, optimisation of energy consumption

Outline

- Introduction to CERN and LHC Cryogenics
- Power input for refrigeration, design & implementation
 - The Carnot factor
 - The heat loads (final user + distribution)
 - The refrigerators
- Operation results, availability and power consumption
- Indentified alternatives for further optimisation
- Summary

What else could be done?

- Further optimise the operation of the cryogenic system with the 2 remaining sites to be operated with 1 Refrigerator for 2 sectors [Cryo + LHC OP]
- Evaluate the possibility, impact and effects of allowing reduced cooling water temperature to better match atmospheric conditions [Cryo + Cooling]
- Evaluate the possibility, impact and effects of recovering heat at the compressor station
 [Cryo + Cooling + CERN]
- If heat recovery would be interesting, evaluate the possibility, impact and effects of changing the LHC operation schedule (with steady operation in winter time to combine two above effects) [Cryo + Cooling + CERN]

Reducing cryoplants in operation ?

CFR

- In operation
- Ready but stopped

P4: Very specific with Radiofrequency cavities, not foreseen to stop one plant
P18-P2: Tests done in 2010 not conclusive yet, impedance and heat loads at P2, to be understood

=> Not much to be expected, but worth trying to keep process and technical competencies, and identification of limits

Cooling water temperature (1/2)

Cooling water supply - Present operating conditio

Workshop Energy for sustainable science, ESS Lund, Oct'2011 33/38 LHC Cryogenics, optimisation of energy consumption

Workshop Energy for sustainable science, ESS Lund, Oct'2011 34/38 LHC Cryogenics, optimisation of energy consumption

Compressor station flow scheme

View of a compressor station

Workshop Energy for sustainable science, ESS Lund, Oct'2011 36/38 LHC Cryogenics, optimisation of energy consumption

Heat recovery potential

- LHC cryogenics is the largest, the longest and the most complex cryogenic system worldwide. From design to operation, availability and energetic efficiency have played key roles.
- We could achieve a reasonable global availablity (around 95%) so far with beams while operating close to best reasonably possible efficiency of the cryogenic system (25MW for 40MW installed) and reducing helium losses during beams operation period
- Potential improvements, but with impacts on others: (global optimum!)
 - Lowering the cooling water temperature
 - Moderate heat recovery (still in the MW range)
- Future systems will have to evaluate such new features at design!