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N Outline

* Introduction to CERN and LHC Cryogenics

 Power input for refrigeration, design & implementation

— The Carnot factor
— The heat loads (final user + distribution)

— The refrigerators

* QOperation results, availability and power consumption
* Indentified alternatives for further optimisation

«  Summary

Workshop Energy for sustainable science, ESS Lund, Oct’2011 2/38 LHC Cryogenics, optimisation of energy consumption



| gt s h .4',r'~..;.‘_'_- S e ' ~ '
= " ‘1 :‘. - -~ 2 B < A" ?‘- ’:r‘ R SF 15 - e :.‘,
b‘ R, 7 o ity N 11 r -w

. LHC Cryo-OP

,451'15' ization 1or NuUcle

Founded |n1954 — "“*F .

20 Member States .fstéto'éiéie?“_'?’fi; g
Annual budget; = 900 MCHF

Below 2500 staff - ‘ <

p-p collisions
1034 cm—2.s1

14 TeV
J4 500 MJ beam energy

24 km of superconductmg magnets @1.8K,8.33T
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e,
@ Main reasons to superconducting

For accelerators in high energy physics

 Compactness through higher fields Capi’m\ Cost

Eom = 03.B.r E.w = E . L

[Gev] [T] [m] [Gev]  [MVIm] [m]

—

* Saving operating energy

Electromagnets: Acceleration cavities

Resistive: Pioout = Epeam Piput = Rs.L.E2/wW

Superconducting: P, = Pref R,=Rges t R,

Rges = (1/T) exp(-BT./T)
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LHC Cryo-OP
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36’000 t

" C ryogeni ¢ pl ant

LHC cryogenics is the largest, the
longest and the most complex
cryogenic system worldwide
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LHC Cryo-OP

Magnet cooling scheme

Superconductivity served by superfluidity !

- Nb-Ti@4.5K

.| —NeTi@2K —<

\ o—Nb3Sn @ 4.5 K

Hell

Pressurized He 1I

Saturated He H/(\

saturated He I, rowing\ heat exchanger tube
Two-phase He @ 1.8 K pressurized He I, static
Pressurised He @ 1.9K
(=26 1/m)
Beam screen @ 4.6-20 K
Heat intercept @ = 4.5 K
Radiation screen @ 50-65 K
Heat intercept @ = 50 K

Jc [A/mm2]
)
8

sc bus bar connection

sc conductors helium vessel
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LHC Cryo-OP

How does it compare ?

LHC, ATLAS, CMS

e
\

~ Before LHC: ]
_existing experience for design, safety,
controls, operation, availability, ...

LEP2+
80 |

ITER
50 27 LEP?

40 1 OMEGA ALEPH,
BEBC, DELPHI,

20 + ISR Low-Betz LEP Low-Bet:

LHC: 144 kW

Tevatron, RHIC, Jlab,
0 w x w x SNS, HERA, Tristan, ...

1960 1970 1980 1990 2000
Year

We did not start from scratch!
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Outline

LHC Cryo-OP

O

 Power input for refrigeration, design & implementation
— The Carnot factor
— The heat loads (final user + distribution)

— The refrigerators
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e,
@ Power input for refrigeration

Power Input = Power@cold x Carnot / %w.r.tCarnot

4IMW = 18BKW @ 4.59K x 66 / 30%

8 such plants installed for LHC + specific units for the 1.8K process
= 40 MW installed electrical power

An idea of yearly operating costs (Power only)
= 11 months (320GWh) @ 60 CHF/MWh =>19.3 MCHF
— Already 1% is about 0.2 MCHF !!!

An obvious incentive to optimise each of the above contributing factors !
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The Carnot Factor (1/3)

The Carnot Factor is a direct consequence of the
combination of first and second thermodynamic laws

LHC Cryo-OP

First Law :

SecondLaw :

Powerlnput :

Carnotfactor:

Heat / Work entering the system +
Heat / Work leaving the system -

This is THE governing effect for cryogenics
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LHC Cryo-OP

The Carnot Factor (2/3)

Graph for Twarm = 300 K

For low temperatures: Ly 1~ L

He Il T T
1.8K - 166
- Use of low temperatures if no alternative

\\ - Better intercept heat at higher temperatures

He
4 5K - 65.7
H2
\ N2
[7TK-29

10 100

Cold Temperature [K
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LHC Cryo-OP

e Typical LHC Cross-section
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@ Minimising heat loads (1/4) o0“

Power Input = Power@cold x Carnot / %w.r.tCarnot

Heat loads management: Very detailed and methodic accounting of the
various contributions, centralised contingency factors, periodic follow-up

RnD: Large design & optimisation efforts for the cryostat and
its sub-components W P =T |

T
Non-metallic composite support post Multi-layer insulation
for magnets, with heat intercepts
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Stainless Steel Plate

heat exchangers
" - X , b

Significant reduction of heat loads (= 25%)

Workshop Energy for sustainable science, ESS Lund, Oct’2011 14/38 LHC Cryogenics, optimisation of energy consumption



e
@ Exergy, Introduction

Large scale (capacity) superconducting applications require distributing
cooling power over long distances (high flow rates) with minimised
temperature gradients for high thermodynamic efficiency

Refrigerator Application

“‘well optimised”

For losses !

Exergy analysis (applied in the past for refrigeration plants) has been
proposed as a way to quantify distribution losses, with the potential to
help technical arbitration amongst competing solutions
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LHC Distribution, Exergy Flow Diagram e

LHC Cryo-OP
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LHC Cryo-OP

LE DIAGRAMME DE STROBRIDGE
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18 kW @ 4.5 K Refrigerators ofe

LHC Cryo-OP

o

33 kW @ S0 Kto 75K - 23 kW@ 4.6 Kto 20K - 41 g/s Ilquefactlon
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LHC Cryo-OP

7 o
@ Contracting refrigerators

Similar amounts !

Adjudication : CAPITAL Cost  + OPERATING cost over 10 years

LOWEST 1/3 213 (6600 hr/yr)

el el Low load Max load
quotations by bidders
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Real performance measured for acceptance, with bonus/malus correction
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LHC Cryo-OP

@ Testing the cryogenic sub-systems E‘
b4

Performance assessment of all sub-system (at least a
type test) before being connected to the next one

asccasca qscatasec

-

I

Sector 7-8 | Sector 8-1

familiar with process optimisation and tuning for availability
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Outline

O

LHC Cryo-OP

* Operation results, availability and power consumption
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Crvo‘genic Distribution Line
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Functional analysis, Methodic and systematic approach, a bit of time ...



@ Cryo

~ S Shift 24/7

operator in Cern Central Control room

— e
—_—

- - e
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LHC Cryo-OP
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LHC Cryo global availability 2010

Based on LHC_Global_CryoMaintain signal per unit of time

LHC Cryo-OP
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Cryogenic architecture

Typical LHC even point

Odd point

MP Storage

Even point

MP Storage

']Cryop|ant Refrigeration

Refrigeration
Unit

could keep o

Warm

the helium i Compressor

Station

Compressor I ;
Station

Compressor |1 j

Station

Warm ]
Compressor ||
Station

inventory in

place, and

Cold Box

Upper

Cold Box

allow the
operation of

LHC atlow
level Cold

Compressor |:

Lower

Cold Box

@r;E(

LHC Cryo-OP

Odd point

MP Storage

Surface

Shaft

Interconnection Box

Distribution Line

Magnet Cryostats, DFB, ACS

LHC Sector (3.3 km)

Cold
Compressor |:

Underground

Distribution Line

Magnet Cryostats, DFB, ACS

LHC Sector (3.3 km)
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LHC Cryo-OP

Efficient operation at low load [

Typical LHC even point

Odd point Even point Odd point

MP Storage MP Storage MP Storage
I

4 5K Ref.: =10% capacity left per
sector for dynamic loads, after
specific adjustments made

Refrigeration
Unit
Warm

Compressor [1i| Compressor |1

Station i Station
I :

= MW of power input, instead of
SMW (2x4MW)

Upper : i
Cold Box |i; j Surface

Shaft

Competitive for recovery after stops
(<10hrs for CC, <24hrs after power
failure for 2 sectors)

Lower

Cold Box ;1
| v S Eem— Y Cold

Compressor |:

Underground

B M N N N N R N N

== |nterconnection Box

| | [ :
—: Distribution Line Done for 50% Distribution Line :—
Magnet Cryostats, DFB, ACS Magnet Cryostats, DFB, ACS
of LHC !

LHC Sector (3.3 km) LHC Sector (3.3 km)
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LHC Cryo-OP

Power consumption reduced by = 8 MW

Gain in energy = 50 GWh (9months)

Stop
ryoplant| | Net gain = 3 MCHF / year !!!
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Outline

LHC Cryo-OP

O

* Indentified alternatives for further optimisation

«  Summary
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What else could be done ?

* Further optimise the operation of the cryogenic system with the
2 remaining sites to be operated with 1 Refrigerator for 2 sectors
[Cryo + LHC OP]

« Evaluate the possibility,impact and effects of allowing reduced
cooling water temperature to better match atmospheric conditions
[Cryo + Cooling]

* Evaluate the possibility, impact and effects of recovering heat at the
compressor station
[Cryo + Cooling + CERN]

Workshop Energy for sustainable science, ESS Lund, Oct’2011 31/38 LHC Cryogenics, optimisation of energy consumption



Reducing cryoplants in operation ?

LHC Cryo-OP

O Inoperation
[0 Ready but stopped

- P4 Very specific with Radio-
Process .
being frequency cavities, not foreseen
studibd to stop one plant
- P18-P2: Tests done in 2010
not conclusive yet, impedance
and heat loads at P2, to be
understood

=> Not much to be expected,
but worth trying to keep process
and technical competencies,
and identification of limits

" C ryogeni ¢ plant O
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Cooling water temperature (1/2)

LHC Cryo-OP

Cooling water supply - Present operating conditioc

Work with Cooling team to be
as specified or lower

1) J' Specific cooling supply from
}—— SPS very large cooling loop,
no load when SPS stopped

—
X
R
g
=)
e
g
v
Q
G
[t

=> An advantage for the
cryogenic process !!!

—— P18
—— P2

— P4
——P6

—— P8
— Specified (23 C +/- 1C)

01-Jan-2010

02-Apr-2010
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LHC Cryo-OP

e,
VA Compressor station flow scheme

4 unicosHMI_1: unicosHMI
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LHC C ryo op

r . " . I{j
@ View of a compressor station

i

Helium Coolers
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Heat recovery potential e

LHC Cryo-OP

20C 30C
500m3/h 22C 29C | 500m3/h

150m3/h
22C 29C

300m3/h

Motors 22C

Separate cooling water distribution for additional coolers

In parallel with existing coolers

In series

For Cryogenics: From Cooling point of view:
- Warmer temperatures / bacteria

- Only oil coolers concerned (fraction?) Transients / other users

- Only with existing technology and
no serious operational risk !

Not so straightforward, worth a study ?
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Summary

o

« LHC cryogenics is the largest, the longest and the most complex
cryogenic system worldwide. From design to operation, availability and
energetic efficiency have played key roles.

 We could achieve a reasonable global availablity (around 95%) so far
with beams while operating close to best reasonably possible efficiency
of the cryogenic system (25MW for 40MW installed) and reducing
helium losses during beams operation period

* Potential improvements, but with impacts on others: (global optimum!)
— Lowering the cooling water temperature
— Moderate heat recovery (still in the MW range)

* Future systems will have to evaluate such new features at design!
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