

Project nr. POIG.02.03.00-00-028/08

GRANTS FOR INNOVATION

Project co-financed by the European Union under the European Regional Development Fund

Data = value => needs protection

Data is value:

- Expensive research results
- Priceless cultural heritage:
- Data needed for organizations / projects to operate

Some of these data need protection!

Data production worldwide (IDC): Overload 1 8 1 Global information created and available storage Exabytes 2,000 FORECAS 1,750 1,500 Information created 1,250 1,000 750 500 Available storage 2005 Source: IDC In Poland:

Country: PB's of data /year
Digital library: 100's of TB/year
Individuals: 100's of GB/year

Data archiving/backup is complex

Limited media durability:

15-30 years (5000 mount)

Limited technology lifetime

Costs, complexity, lack of know-how

NDS2: use cases

- 1. Individual user (scientist, researcher, student):
 - Data to be available, persistent and safe
 - Easy and efficient access to data from various OSs
 - I want transparent safety and security mechanisms
 - I want to share my data and be able to publish them

NDS2: use cases

- 2. Institution, workgroup (digital library, scientific project)
 - My data must be available, persistent and safe
 - I need a local working space with simple and efficient access through typical LAN protocols (CIFS, NFS)
 - Local space should be extended by a remote space

Solution: outsourcing to PLATON project

Added values:

- Trusted service provider
- Collaboration history
- Knowledge & experience
- Availability & proximity:
 - Redundant infrastructure
 - Broadband network to universities
 - and research centres

Additional services

IdP, AAI

The infrastructure

storage redundancy & high capacity

- Multiple sites, geographically distant data centres
- Data replicated over the sites
- Storage resources: 12,5 PB of tapes; 2 PB of disks

NDS2: problem definition

NDS2: secure, efficient and easy to use

To provide at the same time:

- Data provided on a safety and secure way
- Efficiency of data storage and access
- Transparency of safety and security mechanisms
- Data sharing support
- Support for data publication

Requirements addressed by NDS platform

Features	Comments
Data availability & persistency	Replication, consistency checks
Basic security	Transfer encryption, access control at rest, policies (media degaussing)
Data sharing within a group	Server-side Linux filesystems mechanisms for access control
Easy and efficient access	Access to data through number of protocols: SFTP, WebDAV, Web GUI, GridFTP
Safety mechanism transparent & scalable	First replica created by user using a convenient protocol; then replicas created async. using GridFTP for efficiency in WAN

NDS2 a secure and extended NDS

NDS and PLATON experience:

- Replication, data persistency etc. OK!
- Encryption and integrity control needed!
 - Manual implementation too complicated
 - Existing tools not good enough
- System shoud better integrate with user's system (Win, Linux, mobiles...)
 and institution / workgroup environment

NDS2 (2011-2013): National Data Store 2:

- End-to-end encryption & integrity control
- Easy and efficient data exchange
- Virtual disks for Windows, Linux
- Appliance for institutions
- Portable GUI client for individuals

NDS2

Features	Comments
End-to-end security: privacy & integrity	AES-256 for data, RSA for key exchange, SHA digests
Easy access, safery mechanisms transparency	Client-side cryptography provided by easy to use clients: virtual filesystems, Java GUI
Rollback and versioning	Server-side versioning + support in clients
Easy, efficient and secure data exchange	Symm. and assym. key hierarchy, key exchange mechanisms
Mobile access	Android application
Efficient & easy local storage & access + remote backup	Appliance for institutions

NDS2 cryptography: encryption, integrity control and keys management

NDS2 cryptography: encryption, integrity control and keys mgmt (1)

Overall concept:

- Data encrypted with AES-256 CTR
 - AES Strong and high performance algorithm for bulk data, resistant to brute force attacks

- Hardware supported: Intel Westmere and ARMv8
- Performance: 1-2,5 GB/s on todays workstations
- CTR mode enables parallelism
- Integrity control by SHA-512:
 - Resistant to collisions and attacks
 - Calculated:
 - User-side (per 64kB logical block) in order to enable users to detect manipulations or corruption on data or their digest
 - System-side (per file) for replica integrity control

NDS2 cryptography: encryption, integrity control and keys mgmt (2)

- Client-side encryption and integrity control:
 - AES 256 CBC generated per file for data privacy
 - Stored in the file header on the system side
 - Protected with user's private RSA key
 - => User takes care of only 1 pair of keys
 - SHA-512 digests calculated per logical 64-byte block
 - Stored with each block on the system side
 - Protected by encryption using files' symetric key
 - => User application may access digest information using file's AES key

file header
516 Bytes
Version (4 Bytes), { symmetric key+ NONCE,

header digest }

encrypted with RSA 4k

*
(Data la salh 's th's shoot (4 D tas)
{ Data length in this chunk (4 Bytes)
SHA512 block digest (64 Bytes)
User data (65468 Bytes) }
encrypted with AES and file symmetric

data chunk 1

64 kBytes

data chunk 2	
64 kBytes	

{ Data length in this chunk (4 Bytes)
 SHA512 block digest (64 Bytes)
 User data (65468 Bytes) }
encrypted with AES and file symmetric

NDS2 cryptographic clients:

Features & concept: Implementation,

Clients for NDS2 (1)

Windows users

File System

CryptoFS 4Windows

- FS-like access (.net CallbackFS)
- Encryption & digests (.net crypto API)
- SFTP client (Rebex SFT library)

Linux users

File System

CryptoFS 4Linux

- SSHFS extension
- FS-like access (FUSE/SSHFS)
- Encryption & digests(OpenSSL)
- SFTP client(Built-into SSHFS)

Workgroups

Appliance

- LAN access through CIFS (Samba server)
- FS-like access (CryptoFS 4 Linux)
- Admin. interface (php + perl)
- Local disk storage

NDS filesystem

(extended with versioning, ACLs)

Clients for NDS2 (2)

Clients for NDS2 (3)

NDS2: appliance concept

Use cases:

- Small institution / workgroup shares data using local NAS appliance
- Data protected against disaster and intrusion: backup and encryption
- Remote space is a backup of local; local is cache of remote

NDS in PLATON (3)

Sites vs system instances (1)

Example instances: PZ1 and WA1

Project-dedicated instances

NDS software architecture

Overall architecture

User

www. platon.pionier.net.pl PLATFORMA OBSŁUGI NAUKI PLATON 🛭

ANTE DE

PLATON's PAS infrastructure:

Tape & Disk Storage sites (15+ PB)

IBM TS3500 Tape library in Poznan

www. platon.pionier.net.pl PLATFORMA OBSŁUGI NAUKI PLATON 🛭

antel antel

PLATON's PAS infrastructure:

Tape & Disk Storage sites

TSM/HSM storage servers

Access Node and Database Node servers

IBM DS5300 AND DS5100 disk arrays in Poznan

Summary

- National service
 - as an added value to the network connection
 - or independent
- Base for the 'Common Data Services'
- Provided for individuals ... SMEs ... universities
- Worked out sustainability policy

SERVICE PLATON

COORDINATOR:

INSTITUTE OF BIOORGANIC CHEMISTRY
POLISH ACADEMY OF SCIENCES
POZNAŃ SUPERCOMPUTING AND NETWORKING CENTER
ul. Noskowskiego 12/14, 61-704 Poznań,
Phono: (+48,61) 959, 20,00

Phone: (+48 61) 858 20 00, fax: (+48 61) 852 59 54,

e-mail: office@man.poznan.pl,

www: http://www.man.poznan.pl

Project nr. POIG.02.03.00-00-028/08

GRANTS FOR INNOVATION