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• High power proton and electron superconducting RF linear

accelerators are powerful tools for scientific research used to

generate secondary particles at high intensities, such as

neutrons, neutrinos, muons, for Free Electron Lasers, etc.

• The applications of these facilities have a broad spectrum in

the fields of particle physics, condensed matter physics,

material science, chemistry, biology, and medicine.

• Another application under discussion is Accelerator Driven

Subcritical Reactors (ADS).

• The production of megawatt-class proton and electron beams

implies the consumption of electrical power on a large scale.

Motivation
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• For each new generation of accelerator facilities we want 
better beam current, flux, rate, brightness, luminosity. 

 typically needs more power!

• Acceptance of these projects by authorities and the public 
becomes increasingly difficult.

Thus, one needs to work on the following:

– Improve efficiency of accelerators;

– Demonstrate efforts to improve efficiency to funding organizations / to 
public;

– Adapt our facilities to new sustainable energy production.

• New projects and operating facilities must focus on improving 
the energy efficiency with a higher priority.
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Linac Stage Particle Application Operation 

regime

Duty 

factor, 

%

Beam 

Current, 

mA

Beam 

Energy, 

GeV

Average 

Power, 

MW

SNS 

(USA)

Operation H- Neutron 

Source

Pulsed 5.85 25 0.957 1.4

XFEL 

(Germany)

Commissioning e- FEL Pulsed 0.65 5 17.5 0.57

ESS

(Sweden)

Construction H+ Neutron 

Source

Pulsed 4 62.5 2 5

MaRIE

(USA)

Concept Study e- FEL Pulsed 1 8 12 1

ISNS

(India)

Concept Study H- Neutron 

Source

Pulsed 10 10 1 1

LCLS II

(USA)

Construction e- FEL CW 100 0.1-0.3 4 0.4-1.2

PIP II

(USA)

Design H- Neutrino 

Source

CW/Pulsed 100/1.1 2 0.8 1.6/0.016

CIADS

(China)

Design H+ ADS CW 100 10 1.5 15

ADSS

(India)

Concept Study H+ ADS CW 100 30 1 30

Large SRF Linear Accelerators:
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Power Flow in SRF Accelerators
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Accelerator

 RF 
• HV sources, 
• RF sources,
• Accelerator structure

 Magnets 

Auxiliary systems
 Cryogenics,
 Cooling,
 Air conditioning,
 Control, diagnostics
 Etc.

Secondary radiation
 Neutrons,
 Neutrinos, 
 Synchrotron radiation,
 Etc.

beam
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“Efficiency”: we consider a fraction of grid power
converted to beam power, i.e., the ratio of the delivered
beam power over the accelerator power consumption,
including RF, magnetic system, cooling/cryogenics, but
neglecting auxiliary systems and experimental facilities.

𝜂 =
𝑃𝑏𝑒𝑎𝑚

𝑃𝑚𝑎𝑔𝑛𝑒𝑡 + 𝑃𝑅𝐹 + 𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 + 𝑃𝑐𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐𝑠

depend on beam loading
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RF Amplifier 
(gridded tube, klystron, IOT, 
SSA, etc)

RF input

AC/DC

Cooling

Accelerating     
structure

Grid

𝐎𝐯𝐞𝐫𝐚𝐥𝐥 𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 =
𝐏

𝐑𝐅𝐨𝐮𝐭

𝐏
𝐑𝐅𝐢𝐧

+𝐏
𝐀𝐂𝐢𝐧

+𝐏
𝐜𝐨𝐨𝐥𝐞𝐫𝐬

RF output

o AC⇾DC (transformer, switch, HVCM losses and 
settling time)

o DC⇾RF (RF source efficiency)
o Amplifier and building cooling

Typically, overall AC ⇾RF efficiency ⪝ 50%

AC ⇾RF Overall Efficiency



11/23/2017 V.Yakovlev | 4th Workshop on Energy for Sustainable Science at Research Infrastructures11

RF ⇾beam Overall Efficiency
o RF cavity filling  (pulsed regime)
o Control overhead (~10%)
o Transmission line losses (5-10%)
o Microphonics 

ηfilling= wbeam/(wRF)= 1/[2V·ln2/(R/Q·ω·q)+1]

where

-V is the cavity voltage,

-I is the beam current,

-ω is cyclic frequency, 

-q is the total charge of the protons in the pulse, q=I* tbeam

For SNS    ηfilling= 85% (q=24e-6 C)

For PIP II  ηfilling= 5.7% (q=1.1e-6 C)

Overall RF⇾beam efficiency: 
• 80-85% CW                                                      
• 3-55% (pulsed, strongly depends on  the beam loading)

(pulsed)

Beam Duty Factor: tbeam*Rep_rate
RF Duty Factor: (tfill+ tbeam)*Rep_rate
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Cryogenics:
o Cryogenics duty factor (CDF):

o Static losses :  supports, couplers, beam pipes, radiation) 

typically 5-6 W/CM for XFEL-type CM;

o Dynamic losses : RF losses in the cavities, losses in the 

bellows, couplers (typically small)

Cryo Duty Factor: [tbeam+4τ(ln2-1/8)]*Rep_rate;

τ =2Qext/ω – time constant, Qext ⪝ V/(R/Q)/I.

Dynamic losses/CM =V2/(R/Q)/Q0*CDF*N

N- number of cavities /CM,

Q0 – unloaded quality factor;

For Q0=1.e10:
XFEL (pulsed, ~1% CDF, V=24MV) ~4 W average per CM ~ 6 W of Static losses per CM
LCLS-II (CW, 100% CDF, V=16 MV) ~210 W average per CM >> 6 W of Static losses per CM

Q0 determines the total cryo-losses when dynamic losses >> static losses!
(High Cryogenic Duty Factor or/and high acceleration gradient)



• Q0 and Rs are related by a 

geometrical constant G: Q0=G/Rs

• They measure efficiency

• Heat dissipated in the walls of the 

cavity: Pdiss ~ Rs ~ Q0
-1

• Rs decreases exponentially with 

decreasing T/Tc but it saturates at 

low T: residual resistance Rres

• Generally we decompose Rs into 

temperature dependent RBCS(T) 

and temperature independent Rres

• Cavities often operate at ~2 K 

where both are significant 

Note on Q0 and BCS/Residual Surface Resistance
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Cu at 3 GHz: ~2x10-3 Ω

RresRres~4 nΩ

RBCS~Af2e-Δ/kT

Rs = 3 nΩ, 
Q0 = 1x1010

Rs(T) = RBCS(T)+Rres



Cryogenic Coefficient Of Performance (COP)*
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Public grid

Accelerating structure, 2K
Cryo-Plant

COP(T) = 
𝑃𝑔𝑟𝑖𝑑

𝑃𝑐𝑎𝑣𝑖𝑡𝑦
;

For large Helium cryogenic refrigerators
COP (2K) ≈ 850-1000 W/W

• COP depends on uncertainty in the heat load estimate and degradation of the cryogenic system 

performance*

• For high-DF and CW accelerators cryogenics may impact the entire accelerator efficiency. 

• LCLS II: Q0=1.e10, V=16 MV,  P2K~ 210 W/CM⇾ Pgrid ⪞ 6 MW compared to the beam power of 

1.2 MW (Ibeam=0.3 mA)

Pgrid

Pcavity

*Arkadiy Klebaner and Jay Theilacker, Project X Collaboration Meeting, 2011



Jefferson Lab Cryoplant 

(completed 2012)

 SLAC / LCLS-II to be similar 
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Linear Coherent Light Source-II (LCLS-II)
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• 4 𝐺𝑒𝑉, 0.1 𝑚𝐴 CW SRF LINAC

• 35 CM, 8 cavities/CM + 1 quad

• TESLA-type 1.3 𝐺𝐻𝑧 9-cells 
cavities

• Specs: 𝐸𝑎𝑐𝑐 = 16 𝑀𝑉/𝑚 with
𝑄0 = 2.7 × 1010

11/23/201716
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N-doping:
• “Standard” XFEL technology provides ⪝1.2e10@2K, 20-23 MeV/m (CM);
• N-doping: discovered in the frame of R&D on the Project-X SC CW linac

(A. Grassellino). 

A. Grassellino, N-doping: progress in development and understanding, SRF15 
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Effect on Surface Resistance (and therefore Q0=G/Rs)

• >2x RBCS improvement at 2 K, 16 MV/m

• Reduced maximum field OK for high duty factor applications
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 Unexpected, unprecedented
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LCLS-II Eacc spec

LCLS-II Eacc spec
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N-doping:
• Provides Q0 2.5-3 times higher than “standard” processing.
• Trade-off:
o Lower acceleration gradient, 20-22 MeV/m – not an issue for LCLS II;
o Higher sensitivity to the residual magnetic field.

• Remedy:
o Magnetic hygiene and shielding improvement
o Fast cooldown 

VTS test results of dressed 
prototype cavities

A. Grassellino, N-doping: progress in development and understanding, SRF15 
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Fast cooldown
• Q0=G/Rs; Rs=10 nOhm for Q0=2.7e10

Rs=R0+RBCS+RTF , 
RTF=s*η*Bres , s is sensitivity to residual magnetic field Bres, η is flux expulsion efficiency. 
η is material-dependent!

• For pCM Nb (Wah Chang): 
RBCS=4.5 nOhm, R0=1-2 nOhm, RTF≈1 Ohm for 5mG → Q0=3.5e10

• For production material:
Change heat treatment temperature from 800 C to 900 C+ deeper EP (S. Posen):
RBCS=4.5 nOhm, R0 ≈ 2 nOhm, RTF ≈2 Ohm for Bres ≈ 5mG → Q0 >3e10

“Fast”: 2 – 3 K/minute ,“slow”: < 0.5 K/minute

A. Grassellino, N-doping: progress in development and understanding, SRF15 
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Impact of Modified LCLS-II Recipe on Q0

E
acc
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CAV19
CAV18
CAV17
CAV16
CAV13
CAV11
CAV08
CAV07
CAV06
CAV03

Cavities 17, 18, 19: 
modified recipe - 900 
C degas, ~200 m EP,
2min/6min N doping 

at 800 C

Cavities 03…16: First 
production tests at 
Fermilab, baseline 

LCLS-II recipe - 800 C 
degas, ~130 m EP,

2min/6min N doping 
at 800 C

S. Posen, M. Checchin, A. C. Crawford, A. Grassellino, M. Martinello, O. S. Melnychuk, A. Romanenko, D. A. Sergatskov and Y. Trenikhina, Efficient expulsion of 
magnetic flux in superconducting radiofrequency cavities for high Q0 applications, J. Appl. Phys. 119, 213903 (2016), dx.doi.org/10.1063/1.4953087 .
A. Romanenko, A. Grassellino, A. C. Crawford, D. A. Sergatskov and O. Melnychuk, Ultra-high quality factors in superconducting niobium cavities in ambient magnetic 
fields up to 190 mG, Appl. Phys. Lett. 105, 234103 (2014); http://dx.doi.org/10.1063/1.4903808 .
A. Grassellino, A. Romanenko, S Posen, Y. Trenikhina, O. Melnychuk, D.A. Sergatskov, M. Merio, N-doping: progress in development and understanding, Proceedings
of SRF15, http://srf2015proc.triumf.ca/prepress/papers/moba06.pdf .

Studies leading to modified recipe:

http://dx.doi.org/10.1063/1.4953087
http://dx.doi.org/10.1063/1.4903808
http://srf2015proc.triumf.ca/prepress/papers/moba06.pdf
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Ambient Magnetic Field Management Methods
• 2-layer passive magnetic shielding

– Manufactured from Cryoperm 10

• Strict magnetic hygiene program

– Material choices

– Inspection & demagnetization of components near cavities

– Demagnetization of vacuum vessel

– Demagnetization of assembled cryomodule / vessel

• Active longitudinal magnetic field cancellation 

Magnetic field diagnostics:
• 4 cavities instrumented with fluxgates inside helium vessel (2 fluxgates/cavity)
• 5 fluxgates outside the cavities mounted between the two layers of magnetic shields

Fluxgates monitored during cryomodule
assembly

A. Crawford, arXiv:1507.06582v1, July 2015; S. Chandrasekaran, TTC  Meeting, Saclay 2016 
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Ambient Magnetic Field Management Methods

2-layer magnetic shields
manufactured from Cryoperm 10 

Helmholtz coils wound onto vessel directly

S. Chandrasekaran, Linac 2016, TUPLR027

Cryomodule modification: liquid supply valve 

for 2-phase liquid level, cool-down valve for 

“fast” cool-down



Technology Transfer

• SRF cavity vendors: from niobium material to N-doped 

cavities ready for qualification testing

11/23/2017
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Cavity

Usable 

Gradient* 

[MV/m]

Q0 @16MV/m*     

2K

Fast Cool Down

TB9AES021 18.2 2.6E+10

TB9AES019 18.8 3.1E+10

TB9AES026 19.8 3.6E+10

TB9AES024 20.5 3.1E+10

TB9AES028 14.2 2.6E+10

TB9AES016 16.9 3.3E+10

TB9AES022 19.4 3.3E+10

TB9AES027 17.5 2.3E+10

Average 18.2 3.0E+10

Total Voltage 148.1 MV
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Fermilab Prototype LCLS-II Cryomodule

Spec: 
2.7x1010

Spec: 
133 MV



F1.3-01 VTS pCM after RF_Conditioning

Cavity
Eacc

[MV/m]
Q0

16MV/m
Max 
Eacc

Usable 
Eacc* 

FE 
onset 

Q0@2K
16MV/m

TB9AES021 23 3.08E+10 19.6 18.2 14.6 2.6E+10

TB9AES019 19.5 2.82E+10 19 18.8 15.6 2.6E+10

TB9AES026 21.4 2.57E+10 17.3 17.2 17.4 2.7E+10

TB9AES024 22.4 2.95E+10 21 20.5 21 2.5E+10

TB9AES028 28.4 2.81E+10 14.9 14.2 13.9 2.4E+10

TB9AES016 18 2.75E+10 17.1 16.9 14.5 2.9E+10

TB9AES022 21.2 2.77E+10 20 19.4 12.7 3.2E+10

TB9AES027 22.5 2.75E+10 20 17.5 20 2.5E+10

Average 22.1 2.81E+10 18.6 17.8 16.2 2.7E+10

Tot Voltage 183.1 154.6 148.1 

F1.3-02 VTS CMTF Test

Cavity
Eacc* 

[MV/m]
FE 

onset
Q0

16MV/m
Max** 
Eacc

Usable 
Eacc

FE 
onset 

Q0 @2K
16MV/m    

CAV0008 24 No 2.46E+10 20.5 20.5 No 1.8E+10

CAV0003 24 No 2.22E+10 21 21.0 No 1.8E+10

CAV0006 23 22 2.38E+10 21 21.0 No 2.0E+10

CAV0007 24 No 2.40E+10 21 21.0 No 1.8E+10

CAV0016 24.1 No 2.41E+10 20.4 18.2 12.5 1.3E+10

CAV0013 23 No 2.40E+10 16.86 16.5 No 1.6E+10

CAV0011 24 No 2.33E+10 20.5 20.5 17.5 1.8E+10

CAV0015 21.4 No 2.82E+10 21 21.0 No 2.0E+10

Average 23.4 2.43E+10 20.3 20.0 1.8e10

T.Voltage 194.6 165.8

F1.3-03 VTS CMTF Test

Cavity
Eacc* 
[MV/m

]

FE 
onset

Q0
@16MV/

m

Max** 
Eacc

Usable 
Eacc

FE 
onset 

Q0 @2K 
16MV/m     

CAV0034 26 No 3.33E+10 21 21.0 No 3.36E+10

CAV0039 24 20.0 3.70E+10 21 21.0 15.1 4.17E+10

CAV0040 24.5 No 3.29E+10 12.2 10.0 No 3.58E+10

CAV0026 21.5 No 3.73E+10 12 9.2 9.2 3.21E+10

CAV0027 29.7 No 3.50E+10 21 21.0 16.8 3.25E+10

CAV0029 23.1 No 3.32E+10 21 21.0 No 4.36E+10

CAV0042 24 No 3.30E+10 21 16.8 11 2.77E+10

CAV0032 22.9 No 2.74E+10 21 21.0 15.4 2.98E+10

Average 24.5 3.36E+10 18.8 17.6 3.46E+10

T.Voltage 203.1 146.4

F1.3-04 VTS CMTF Test

Cavity
Eacc* 

[MV/m]

FE 

onset

Q0

16MV/m

Max** 

Eacc

Usable 

Eacc

FE 

onset 

Q0 @2K

16MV/m     

CAV0052 26.3 No 3.70E+10 21 21.0 no 3.11E+10

CAV0036 20 2.73E+10 21 21.0 15.2 2.38E+10

CAV0019 22.5 No 3.71E+10 21 16.0 12 2.75E+10

CAV0041 26 No 3.53E+10 21 21.0 no 2.91E+10

CAV0030 24 No 3.62E+10 21 21.0 16.5 2.91E+10

CAV0020 20 No 3.50E+10 19.8 19.3 13.9 2.42E+10

CAV0051 25 No 3.36E+10 20 19.6 No 2.55E+10

CAV0221 19.3 No 2.93E+10 19.7 19.5 No 2.77E+10

Average 23.4 3.39E+10 20.6 19.8 2.73E+10

T. Voltage 170.0 164.4

Up to date 6 FNAL CM are tested, 9th CM is under assembly.

N–doping and flux expulsion: from breakthrough discovery to working 
technology.

26
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Q0 Field Dependence at Different Frequencies (N-doped)*
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*Martina Martinello | TTC Topical Workshop 2017

5-cell 650 MHz β=0.9 PIP II cavities 
*Negligible radiation < 23 MV/m

N-doped cavities



High Q0 at high gradient: N-infusion (A. Grassellino).
Results comparison :“standard” 120C bake vs “N infused” 120C bake

28

• Same cavity, sequentially 
processed, no EP 
in between

• Achieved: 
45.6 MV/m 
 194 mT
With Q ~ 2e10!

• Q at ~ 35 MV/m 
~ 2.3e10

Increase in Q factor of two, increase in gradient ~15%

New potential breakthrough: very high Q at very high 

gradients with low temperature (120C) nitrogen treatment

4/12/16Alexander Romanenko | FCC Week 2016 - Rome34

- Record Q at 
fields > 30 
MV/m 

- Preliminary 
data indicates 
potential 15% 
boost in 
achievable 
quench fields

- Can be game 
changer for ILC!

• All Q vs E curves 
shown are for 1.3 
GHz single cells, 
T=2K

V.Yakovlev | 4th Workshop on Energy for Sustainable Science at Research Infrastructures 11/23/2017



Reproducibility: repeatedly highest Q ever measured >2e10 

at very high gradients > 40 MV/m!

29

• So far three out of 4 
cavities processed with 
this regime have reached 
45 MV/m with high Q

• Performed slow cooldown 
in 10mG and extracted 
very low sensitivity to B on 
order of 0.3 nOhm/mG
-> very robust for Q 
preservation

• All Q vs E curves shown are for 
1.3 GHz single cells, T=2KSlide from A. Grassellino

V.Yakovlev | 4th Workshop on Energy for Sustainable Science at Research Infrastructures 11/23/2017
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• Large Tc ~ 18 K

• Very small RBCS(T)   – RBCS(T) ~ e-1.76Tc /T

• High Q0 even at relatively high T

• Higher temperature operation

• Simpler cryogenic plant

• Higher efficiency

Possibility of cryocooler operation! Industrial 
accelerators for treatment of wastewater & 

flue gas, border security…

Sumitomo
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Nb3Sn: technology of the future*
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*S. Posen and D.L. Hall, Supercond. Sci. Technol., 30 033004 (2017).



Nb3Sn: Cornell University – Fermilab*
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Nb coating chamber, 

20”diam, 82” long
Vacuum 

furnace

State of the art Nb3Sn 
coatings: 1.3 GHz 1-cell

Scale up to 1.3 GHz 9-cell & 
650 MHz 5-cell

*S. Posen, State-of-the-Art Superconducting RF Technology for Accelerators,
Fermilab Colloquium, 2017



Cornell University Results                Fermilab Results
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S. Posen and M. Liepe, Phys. Rev. ST 

Accel. Beams 17, 112001 (2014). 

• Current focus on 1-cell cavities and in 

particular strong Q-slope

• So far some type of strong Q-slope 

observed in all tests

• Working with Northwestern materials 

science to explore role of microstructure



IARC Industrial SRF accelerator project based on Nb3Sn*
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1m

2x2x5m3

• Low cost
• High efficiency
• RF frequency: 650 MHz
• Nb3Sn 4.5-cell cavity
• Operation temperature ~5K
• Conduction cooling (no He vessel)
• Cryo-cooler
• Magnetron-based RF source 
• Built-in multi-frequency RF gun
• Energy: 10 MeV
• Power: 250 kW CW

Applications:
• Pavement improvement
• Civil water treatment

*R.D. Kephart, et al., SRF2015



Summary
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• New projects of large high-duty factor and CW SRF linac demand 
low cryogenic losses and therefore, high Q0

• New SRF cavity processing technologies 
- N-doping
- Fast cooling
are moved from discovery to industry opening the door for large 
CW linac construction (LCLS II, PIP II, ADS, etc.).  

• Nitrogen infusion technology allows high Q0 at high gradient –
very attractive for future liniear colliders (ILC?)

• Nb3Sn allows very high Q0 at higher operating temperature, ~4K, 
which would cause a revolution in SRF for accelerator application 
(especially for industrial accelerators).
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Particle Acceleration via SRF Cavities

• Superconducting radiofrequency (SRF) cavities

• High quality EM resonators: Typical Q0 > 1010

• Over billions of cycles, large electric field generated

• Particle beam gains energy as it passes through

Slowed down by factor of approximately 4x109Input RF power at 1.3 GHz

~1 m Images from linearcollider.org, WIkipediaSam Posen
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