

energie atomique • energies alternatives

Best practice on S&T parks The Grenoble area Impact on large scale RIs

Amal CHABLI

à

F. Bertin, P. Bleuet, P. Gergaud, S. Maitrejean, E. Martinez, O. Renault

amal.chabli@cea.fr

Hamburg, May 31 – June 1, 2012

ERF Workshop

OUTLINE

Introduction

- Grenoble eco-system and Large-scale facilities
- Highlights of industrial R&D technological cases
- Technical limitations & mitigations
- Operational limitations & related initiatives

How to leverage for industry the outcomes of basic research performed in RIs?

From usages to micro- and nano-technologies

Usages

Integrated devices

Nanomaterials

Amal Chabli

œ

Focus on characterization

Comprehensive expertise

- Electron Microscopy
- Ion Beam Analysis

œ

- Nuclear Magnetic Resonance
- Mechanical Tests
- Optical Techniques
- Sample Preparation.
- Scanning Probe Microscopy
- Surface Analysis
- Trace & Contamination Analysis
- X ray Analysis
- Clean Room Metrology

Multidisciplinary skills

- Biotechnology
- Material Science
- Micro & Nano systems
- Nanoelectronics
- Nanotoxicology
- Photovoltaic
- Optoelectronics

Serving

- Choice and improvement of materials
- Analysis of scaling effects and correction or use
- Design of integration processes and validation

Complementarily to the large-scale facilities like ESRF & ILL

Large-scale facilities used for MNT

Micro- & nano-technologies Key access figures 2006-2011

- Annual proposal number 15-20
- Allocated shifts per year ~100

œ

- Accepted proposals **30%**
- Beam time purchase (occasional)

NSLS

SOLEIL ESRF

- Brilliance
- High flux
- High stability
- Spectroscopy
- Multimode analysis
- Tunable excitation
- Pulsed excitation
- In depth analysis

SPring 8

Micro- & Nano-technologies covered areas

- Energy storage
- Photovoltaïcs
- MEMS-NEMS on Si
- Biotechnologies on Si
- Photonics on Si
- Non Volatile Memories

Local chemical composition

- Local chemical bonding
- Local crystalline structure
- Nanoscale morphology
- Interface properties

SR X-ray & neutrons

- Diffraction
- Spectroscopy
 - Fluorescence
 - Absorption
 - Diffusion
 - Photoelectron
- Reflection
- Imaging
- Tomography

Amal Chabli

CMOS integration technology

Transmission Electron Microscopy

œ

Cu interconnections

CMOS transistor

Issues addressed with large-scale facilities

- Cu polycrystalline properties
- Cu strain & stress
- Lwk material porosity
- Inter-diffusion
- Stability

- Crystallography
- Composition
- Chemical bonds
- Dopant site & coordination
- Inter-diffusion
- Interface properties
- Stability

K. Kuhn (Intel), *SSDM*, Japan, 2009 ERF Workshop, Hamburg, May 31 – June 1, 2012

Amal Chabli

Amal Chabli

TSV for 3D integration of IC's

æ

A number of other MNT experiments

White beam µDiff: Cu interconnect lines P. Gergaud et al., *AIP Conf. Proc.* 817, p. 205 (2006)

HAXPES: CMOS gate stacks

E. Martinez et al., *J. of Vac. Sci.* & *Technol. B* 25, 86 (2007) J. Rubio-Zuazo et al., *AIP Conf. Proc.* 931, p. 329 (2007) C. Gaumer et al., *AIP Conf. Proc.* 1173, p. 40 (2009)

Neutron reflectometry: Low k dielectric for Cu interconnects D. Rebiscoul et al., *Microelectronic Eng.*, 85, p. 2089 (2008)

Soft x-ray XPS: CMOS Gate dielectric L. Q. Zhuet al., *J. of Appl. Phys.* 105, 024102 (2009)

X-ray total scattering: Doping of GeTe for PC-RAM G.E. Ghezzi et al., Appl. Phys. Lett., 99 151906 (2011)

EXAFS: HgCdTe for IR detectors P. Ballet et al., J. Electron. Mater. 38, p. 1726 (2009)

EXAFS: GeSbTe for PC-RAM

X. Biquard et al., Appl. Phys. Lett. 98, 231907 (2011).

Amal Chabli

ERF Workshop, Hamburg, May 31 – June 1, 2012

BM29

Large-scale RIs are

key component

in the innovation cycle

SULLEIL CRYSTAL

TEMPO

D32

Where are the limitations ?

At the technical level

- Shutdown of regularly used beam lines
 - case of ESRF-ID32 ?
- Need for improved spatial resolution
- Need for time resolved experiments

At the operational level

- Special requirements of industrial development cycle
 - Speed and frequency of access
- Specific constraints of industrial competitiveness
 - IP management and confidentiality
- Cost of beam time

Several initiatives

Contribution to the beam-line upgrade

Focused bilateral agreements with LSFs

- Demonstration of µTomography capabilities for MNT
 - Dedicated postdoctoral position (ANR MiDiFaBI, 2006)
- Nano-pencil beam diffraction instrumentation developments
 - Dedicated postdoctoral position (ANR RTB programme, 2010)
- Contribution to French CRG lines up-grade
 - µDiffraction instrumentation developments (CRG-BM32)
 - Dedicated national project (ANR MiDiFaBI, 2006)
 - Energy range extension of beam line (CRG-BM1)
 - Dedicated investment and postdoctoral position (ANR RTB programme, 2011)

R&D requirements of MNT taken into account in the upgrade of the LSFs

Connection of advanced tools to beam lines

Development of XPS microscopy (XPEEM)

- High photon flux on sample to Improves lateral resolution(x5) in core-level imaging
- NanoESCA XPEEM acceptance tests
 - Dedicated national project (ANR XPEEM, 2005)

Direct Quantification of Gold along a Single Si Nanowire

NANO LETTERS 2008 Vol. 8, No. 11 3709-3714

A. Bailly,[†] O. Renault,^{*,†} N. Barrett,[‡] L. F. Zagonel,[‡] P. Gentile,[§] N. Pauc,[§] F. Dhalluin,^{II} T. Baron,^{II} A. Chabli,[†] J. C. Cezar,[⊥] and N. B. Brookes[⊥]

- Application of XPEEM to scientific cases
 - Specific proposals submission
 - BESSYII, ELETTRA (2008, 6 weeks)
 - SOLEIL (2009, 3 weeks)

K. Huang et al., *J. Phys. Chem.*, 113, p. 21389 (2009)
K. Huang et al., *ACS Nano*, 4, p.4799 (2010)
C. Mathieu et al., *Phys. Rev. B* 83, 235436 (2011)

Impact on industrial R&D @ long term

Test of specific Long Term Proposals

LTP for Innovation (LTPI)

- To address a specific challenge of the industrial R&D
 - Example : In-operando characterisation for MNT (CMOS, MNV, NEMS)
 - Time and spatial resolution
 - Device non-destructive
 - Design of specific devices
- To induce breakthrough in LSFs instrumental developments

HAXPS @ SPRING8-NIMS beam-line

N. Hrauda et al., Nano Letters 11, 2875 (2011)

Technical challenges

Funding issues

Amal Chabli

ERF Workshop, Hamburg, May 31 – June 1, 2012 .

18

µXRD @ ESRF-ID01

Facilitation of access for industrials

Ref. No 29587

EUROPEAN SYNCHROTRON RADIATION FACILITY

Standard Application for Beam Time at the ESRF

	Proposal Title (175 chars maximum.)		
	Study of the local environment of Ag+ ions in Ag-Ge-		
	S glasses thin films for Conductive Bridging RAM devices		
	Keywords		
	#1: CBRAM #2: X-ray Absorption #3: Ag-Ge-S #4:		
	This proposal is: A new proposal A resubmission of A continuation of :		
	This proposal is: Fundamental Science 9 % 34 Applied Science 9 % 33 Industrial Science 9 % 33	\geq	
	Research Area of the proposal O MD - Medicine O HE - Hard Condensed Matter - Electronic and Magnetic MI - Methods and Instrumentation		
Co Scientif	Sompatibility of Applied Science % 33 Industrial Science fic excellence with Industrial Science % 33 Industrial Science	✓ % 33	
Techno	What success rat	e?	
Amal Chabli ERF Workshop, Hamburg, May 31 – June 1, 2012 19			

- Experiment feasibility & commissioning
- Sample preparation
- Complementary characterization
- Data interpretation expertise
- Training & valorization

Amal Chabli

- Investment in specific tools
- Funding projects for initiation and optimization though R&D programs (ANR IRT NanoElec)

Conclusion

- Large-scale RIs are key component in the innovation cycle and industrial R&D
- Matching to industrial R&D requirements
- Technical limitations & mitigations
 - Specific cooperation agreements supported by dedicated funded projects to ensure specific beam line access
 - LTPI concept addressing industrial challenges together with coordinated breakthrough instrumental developments at LSFs
- Operational limitations & related initiatives
 - Enlarge acientific excellence to innovation
 - Offer a specific interface to industrial applications to optimize beam time costs
 - Fulfill IP constrains and confidentiality requirements by patent highlights introduction and post-patenting publications

Thank you for your attention